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ABSTRACT
Due to their genomic variants, some individuals are more highly affected by toxicants than others.
Toxicant metabolizing and activating variants have been linked with a wide variety of health
issues including an increased risk of miscarriages, birth defects, Alzheimer’s, benzene toxicity, mer-
cury toxicity and cancer. The study of genomics allows a clinician to identify pathways that are
less effective and then gives the clinician the opportunity to counsel their patients about diet,
supplements and lifestyle modifications that can improve the function of these pathways or com-
pensate to some extent for their deficits. This article will review a few of these critical pathways
relating to phase I and phase 2 detox such as GSTP1, GPX1, GSTT1 deletions, PON1 and some of
the CYP 450 system as examples of how an individual’s genomic vulnerabilities to toxicants can
be addressed by upregulating or downregulating specific pathways via genomically targeted use
of foods, supplements and lifestyle changes.
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Introduction

When discussing toxicants, many people think of pollution
and chemicals that are released into the world’s water and
air. Toxicants, however, are any substances that are not
beneficial and are thus “toxic” to human tissue. These cer-
tainly include benzene, and various polyaromatic hydrocar-
bons from gasoline, coal and biofuels and other particulates
found in air pollution. It also includes toxicants such as
mercury and other heavy metals and pesticides. People are
exposed to these elements when they breathe polluted air,
eat contaminated foods, drink contaminated water, as well
as from dental and other occupational and even leis-
ure exposures.

Toxicants are innately dangerous. However, some peo-
ple are more highly affected by toxicants due to variants
in their inherited, genetically coded detoxification path-
ways. The study of genomics allows a clinician to identify
pathways that are less effective and then gives the clinician
the opportunity to counsel their patients about diet, sup-
plements and lifestyle modifications that can improve the
function of these pathways or compensate to some extent
for their deficits. A review a few of these critical pathways
will demonstrate the importance and understanding of
how an individual’s genomically programed detox path-
ways can affect their health and well-being. This review
will then show how nutritionists, physicians and other
clinicians can use this information for developing plans
for personalized, genomically targeted, prevention and
intervention strategies.

Background

Brief review of genomics

Genomics, the study of variants and the genetic code, is at
the forefront of personalized medicine. Genomics is a
powerful tool for physicians, nutritionists and other clini-
cians due to its ability to explain some of the differences
people have in response to environmental exposures to toxi-
cants, their predisposition to various diseases and health
risks such as Alzheimer’s, cataracts, obesity, cancer and a
multitude of other chronic illnesses, as well as their require-
ments for various nutrients.

As a short review, DNA, the molecular premise of com-
plex genetic codes, functions by getting transcribed into
RNA, which in turn gets translated into proteins, enzymes
and nutrient carriers, which are amongst the primary func-
tional units of our bodies. The sequence of amino acids,
whose size and charge define a protein’s shape and ultim-
ately their role in biological pathways, is directly chosen by
every three letters of RNA, or “codon” (1). DNA also can
self-regulate transcription rates based on sequences outside
of the regions directly coding for proteins (2). These introns
and other non-translated areas of DNA used to be referred
to as “junk DNA”, but scientists have shown these areas to
contain crucial regulatory sequences.

Variants in DNA can have dramatic effects on an indi-
vidual. When one “letter” of our DNA is changed, deleted,
or added in, it can change the amount of transcribed RNA
or the code for the resultant protein. These variants or
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“polymorphisms” can be found across all genes and chromo-
somes, affecting their proteinaceous products, and thus the
efficacy of our systems that rely upon them. People want
their pathways to be functioning properly of course, but for
some individuals their biological difficulties are prewritten at
conception when ancestral variants, acquired over millennia
of small accidental changes, are passed onto them. This
brings us back to the high susceptibility some face for toxi-
cant-related illnesses.

Role of reactive oxygen species

Returning to toxicants, it is beneficial to look at one of the
common endpoints of toxic damage to systems, Reactive
Oxygen Species (ROS). Though this is not the only toxic
endpoint this article will go into, it is certainly one of the
most important. ROS, as the name implies, are molecules in
the body that contain oxygen and are highly reactive. These
ROS often function as oxidative agents, taking electrons
from biological molecules such as lipids, DNA, and proteins.
Created most prominently as natural byproducts of mito-
chondrial function, at healthy levels ROS serve in cell signal-
ing to activate and deactivate various cellular pathways (3)
and are functional parts of our immune system, utilized to
harm pathogen invaders (4). Oxidation can also have a var-
iety of deleterious effects, including the induction of muta-
tion in DNA, denaturation of proteins resulting in a loss of
function, or disruption of lipids and membranes that section
off and protect cells (5). Thus, pathological increases in ROS
levels contribute to a negative state described as oxidative
stress. This can occur either due to increased generation or
decreased clearance of reactive species—the latter, especially,
is where genetic variants come into play.

Discussion of subject

Glutathione as the master detox pathway

Shifting focus back to the genomics of eliminating toxicants,
glutathione and its related pathways are an appropriate place
to start. The “master” detox pathways for both removing
toxicants from the body via conjugation and for reducing
and eliminating oxidative stress and free radicals are both
heavily dependent on glutathione. Thus, many of the indi-
viduals more susceptible to various types of environmentally
triggered illnesses, including general adverse reactions with
high exposure to toxicants (6), increased risk of renal disease
(7), cataracts (8), lung cancer (9, 10), and neurodegenerative
issues such as MS (10) and Parkinson’s (11) have problems
with some of the most significant glutathione pathways.

The seriousness of impaired glutathione pathways can be
seen when toxin levels are taken to extremes. In 2011, Dr.
Paz-y-Mino, an epidemiologist and geneticist in Ecuador,
conducted a number of studies where he looked at com-
munities exposed to very high levels of glyphosates
(RoundupTM, etc.) due to aerial spraying in these coffee
growing communities. What he found was that women who
had variants on both chromosomes of either the crucial

glutathione conjugation pathway (GSTP1 Ile105Val) or the
main glutathione enzyme responsible for removal of ROS
and attenuation of oxidative stress (GPX1 Pro198Leu) were
at a significantly increased risk for a multitude of important
health outcomes (6). While overall this community in
Ecuador did have much higher rates of miscarriages (spon-
taneous abortions) and birth defects than typical, genomic
analysis showed that this risk was tremendously variable
based on these two critical glutathione detox pathways. For
individuals with 2 variants in the GSTP1 pathway respon-
sible for toxin conjugation (approximately 11.5% of the
population), the odds of having a miscarriage or child with
a birth defect was 4.9� higher than those who had two cop-
ies of the normal (major allele or wild type) GSTP1 variant.
For individuals with two variants in GPX1 that conveys sig-
nificant difficulties in clearing oxidative stress (2 copies of
this minor allele found in approximately 7–20% of popula-
tion depending on ethnicity), the odds ratio jumped to 8.5�
higher (6). Both genetic variants are also correlated to a sig-
nificantly higher risk of mercury toxicity (11). GPX1 also
relates to problems with visual memory, increased risk of
ulcerative colitis, Type 2 diabetes and peripheral neuropathy
risk (12), and bladder cancer risk (13), with the risk being
modulated heavily by the level of pesticide/herbicide expos-
ure (14).

The same GSTP1 variant discussed above was also shown
to correlate with increased DNA damage with exposure to
pesticides in fruit growers in a Chinese study published back
in 2006 (15). GSTP1 is also responsible for protecting mac-
rophages from nitric oxide cytotoxicity. Nitric oxide is part
of air pollution from traffic and has been associated with
sensitization to other inhaled and even food allergens.
Children with the higher risk genotypes (Ile105Val/
Val105Val) had 2.4� the risk of having food and environ-
mental allergies when exposed to high traffic/high air pollu-
tion situations (16).

But the effects of toxicants are not just limited to those
who are genetically vulnerable due to poor detox pathways.

GSTT1 and GSTM1 null deletions in mercury and
toxin clearance

As previously discussed, GSTP1 is a vital component of the
detox system via attaching toxicants, carcinogens and other
offending substances to glutathione so they can be elimi-
nated in the urine, feces or sweat (Figure 1). GSTT1 and
GSTM1 are also members of this GST (glutathione S-trans-
ferase) gene superfamily and are heavily involved in our
glutathione conjugation detox system. These 2 genes are
unique in that a large percentage of the population is with-
out the protein product due to having a complete deletion
of the gene (17). When the gene is absent on both the chro-
mosomes inherited from an individual’s mother and father,
it is called a GSTM1 or GSTT1 null individual. Those that
have the null genotype lack enzyme activity for the respect-
ive gene (17) and thus have impaired detox/toxicant
clearance (12) as well as impaired heavy metal clearance-
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including mercury and lead- and enhanced susceptibility to
oxidative stress (18).

GSTT1 null, which is found in approximately 17% of the
population (can vary by ethnicity) (17), has been shown to
increase the risk of a wide variety of serious health issues.
Given that glutathione is so central to the removal of vari-
ous toxicants and the mitigation of their effects, the risk of
GSTT1 null can depend heavily on different environmental
exposures as well as nutritional factors. These of course vary
significantly in different parts of the world. For example,
Siberia is known to be one on the most polluted regions of
the world with extremely poor air quality due in part due to
the spread of pollutants from industrial plants in China, but
they also have very high mercury levels due to complex
atmospheric and oceanic processes which pushes higher
amounts of mercury into the high northern latitudes (19).

In Western Siberia, a maternal GSTT1 null has been
associated with 3.63� the risk of congenital malformations
in their children, with particularly high levels of cardiac
malformations (Odds Ratio or OR ¼ 5.03), urinary tract
malformations (OR ¼ 4.20) and CNS malformations (OR ¼
4.4) (20). In a separate study GSTT1 null was also shown to
be associated with a progressive form of epilepsy (OR ¼
5.44) and the effects were found to be more pronounced
when GSTM1 null was also present (21). Regarding GSTM1
null, this deletion has been shown to convey anywhere from
1.34� (22) to 2.06� increased Alzheimer’s risk (23). This
same study also demonstrated an additive risk when com-
bined with the E4 allele of the APOE gene, which is known
to contribute to inflammatory effects and mitochondrial dys-
function. The risk of Alzheimer’s conveyed by the GSTM1
null was 3.07� if present along with one APOE E4 allele,
and up to 5.52� the risk if two APOE E4 alleles were

present (23). Though this article has only gone into detail
regarding a few, but the list of further health risks for indi-
viduals lacking GSTT1 or GSTM1 function is quite vast. It
includes increased risk of various cancers such as lung and
brain tumors, neurodegenerative diseases such as
Parkinson’s, and many other health risks (9, 24).

Addressing glutathione genomic pathways

During clinical training, practitioners are taught that they
should not order a test unless they know what they are
going to do with the results. This tenant has been used as
an example of why clinicians should not yet offer genomic
testing to patients. However, with nutritional science, the
science of supplementation and a better understanding of
genomic mechanisms, clinicians can now use evidence-based
medicine to address genomics as part of prevention and tar-
geted treatment regimens.

To help understand this concept of using targeted pre-
vention and intervention strategies, this article will use
glutathione pathways as examples. For an intervention to be
genomically targeted, it should not only have data support-
ing that it addresses the genes being discussed, but also out-
comes data showing improvement in clinical endpoints
affected by the gene. For example, the GSTP1 variant dis-
cussed in the examples above has been associated with
higher rates of a variety of cancers including breast cancer.
Women with GSTP1 Val/Val (2 risk alleles) were shown to
have 1.5� the risk of breast cancer and a 1.69-fold increased
risk of premenopausal breast cancer. This risk, however,
increased further (from 1.5 to 1.75-fold) if these women had
a low intake of cruciferous vegetables (25). Thus, recom-
mending a diet high in cruciferous vegetables to GSTP1

Figure 1. Glutathione Transferase Conjugation. Glutathione Transferases in the liver catalyze the conjugation of a variety of toxicants to the cysteine residue of a
reduced glutathione (GSH). This conjugate is then excreted ultimately in urine or sweat by way of the circulatory system if water soluble, or in feces via the biliary
duct if water insoluble.
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homozygotes makes sense. Research indicates that intake of
cruciferous vegetables, which are high in glucosinolates—a
sulforaphane producer, has been inversely correlated with
breast cancer risk (26). Furthermore, it is known that sulfor-
aphane producers (glucoraphanin and myrosinase in com-
bination) will increase glutathione production via a variety
of genetic pathways including the upregulation of GSTP1
(27), and that these same sulforaphane producers have been
associated with lower breast cancer risk. Thus, it is reason-
able to counsel patients with GSTP1 variants to consider
increasing their intake of cruciferous vegetables and/or to
supplement with a sulforaphane producing supplement.
These dietary and supplementation strategies would be con-
sidered genomically targeted. Suggesting supplementation
with N-acetylcysteine (NAC), which helps push the rate lim-
iting step for the synthesis of glutathione by providing more
available cysteine (Figure 2), would also be another option
(28). Interestingly, and fitting with linking recommendations
to both genomics and outcomes data, NAC has also been
shown to decrease miscarriages (an outcome that was
increased in women with 2 GSTP1 variants) (29).

Furthermore, given the studies showing that GSTP1 is
involved in the clearance of glyphosates, it also makes sense
to counsel these women (especially those who are pregnant
or trying to conceive) to do their best to avoid grains and
foods highest in glyphosates. Foods containing high levels of
allium, such as garlic and leeks, purple sweet potatoes, rooi-
bos tea, honeybush tea, green teas and rosemary extract
have all also been shown to upregulate GSTs and it would
therefore be appropriate to recommend incorporating as
many of these foods into the diet as possible (30). When
using food to upregulate gene expression, dosing used in
studies needs to be considered as some of the quantities are
atypical dietary quantities and supplementation may be pre-
ferred (31).

In the case of an individual with variants in the GPX1
pathway discussed previously, sulforaphane and cruciferous
vegetables can also be used to upregulate this gene (32), but
another highly effective way of upregulating this gene is by
increasing the amount of selenium in the diet. This enzyme
is known to be a selenoprotein and the level of transcription
of this gene relates to selenium status. For individuals with
variants in GPX1, increasing dietary selenium (1 brazil nut
daily) was shown to upregulate the production of this
enzyme significantly (33). Individuals with GPX1 variants
have been shown to have worse long-term visual memory
skills and other signs of cognitive decline and

supplementation with Brazil nuts has been shown to slow
this cognitive decline and improve memory.

Vitamin C activation and genomics

Glutathione transferases are involved in other important
chemical reactions throughout the body that also contribute
to environmentally acquired illness. While sun exposure
may not exactly be a classic toxin, high energy blue light
and radiation from the sun does cause a lot of oxidative
stress to the eyes (34). Pollutants in the air can further con-
tribute to ocular injury. GSTO1 and GSTO2, which are
another class of the glutathione transferases, are involved in
converting the precursor of vitamin C synthesized by our
bodies into active ascorbic acid, an important antioxidant.
GSTO1 and GSTO2 variants have been linked to cataracts
(35), while a literature search will also show that vitamin C
deficiency has been linked to cataracts (36). Therefore, it
makes sense in individuals with GSTO1 and GSTO2 var-
iants, especially if homozygous, to recommend vitamin C
supplementation or careful attention to make sure that they
get adequate vitamin C in their diet as a genomically tar-
geted intervention.

NQO1 and benzene toxicity

While there are many different genes associated with risk of
benzene toxicity including CYP2E1 which will be discussed
later, but for the purpose of clarity, this article will focus
here just on the highly significant NAD(P)H quinone oxi-
doreductase 1 (NQO1). The NQO1 gene encodes a reduc-
tase known to be important for its ability to convert inactive
forms of Vitamin E and CoQ10 to their active forms, which
are themselves important antioxidants (37). However, within
the context of benzene, NQO1 most notably is involved in
the reduction of benzoquinones into hydroquinones (Figure
3) (38). Both benzoquinone and hydroquinone are natural
stages within the metabolism of benzene and have been
associated with toxicity. However, partial or total loss of
NQO1 function (and thus greater concentration of benzo-
quinone) results in more severe benzene toxicity, implicating
a lessened toxicity when in a reduced state (hydroquinone).
Indeed, this has been confirmed by research, demonstrating
the importance of NQO1 to relief of benzene toxicity (39).
For those interested, this is hypothesized to be due to
hydroquinone’s mechanism of toxicity to be indirect via

Figure 2. Glutathione Synthesis. Glutathione is synthesized in two steps from three amino acids. Initial conversion of Cysteine and Glutamate to Gamma Glutamyl
Cysteine (c-GC) by Glutamate Cysteine Synthase (GCLC) is the rate limiting step due to the relative scarcity of Cysteine. From there, c-GC is combined with Glycine
by Glutathione Synthetase (GSS) to form active Glutathione.
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creation of ROS (and thus addressable by alternate path-
ways), while benzoquinones directly damage biological mole-
cules such as DNA, and are difficult to attenuate through
alternate mechanisms (38, 40).

Genetic variants of NQO1 at C609T (the most commonly
studied variant) often lead to complete or near complete
loss of function for each chromosome they are on (41).
Thus, if an individual has one minor allele, they are only at
50% of normal NQO1 function, while with two copies they
are at nearly 0% functionality. These individuals are at
much higher risk for adverse effects from benzene exposure.
In research conducted among the population of Shanghai,
homozygotes for the C609T variant were found to be at a
7.6� increased risk for benzene poisoning, which was linked
to later development of nonlymphocytic leukemia (42).

In cases of partial or complete loss of function of NQO1,
a few interventions have been noted to help reduce damage
from benzenes. The most ideal interventions seem to involve
restoring NQO1 function to normal levels. Particularly in
heterozygotes expressing half function, sulforaphane (broc-
coli, kale, cabbage, etc.) in moderation has been demon-
strated to restore apparent full function in in vitro studies
(43). Similar effects have been demonstrated in response to
carnosic acid, commonly found in rosemary (44), and alpha
lipoic acid (45). Furthermore, sulforaphane and alpha lipoic
acid have been shown directly to diminish the effects of
benzene toxicity, confirming the biological significance to
the upregulation of NQO1. Further studies on the benzene-
protective effects of carnosic acid are thus warranted, but
currently no such effect has been demonstrated. What these
supplements have in common is an apparent activation of
the Nrf2 pathway upstream of NQO1 (43–45)—providing a
target of upregulation that may be addressed by yet other
supplements or dietary changes. However, it is unclear if

these interventions can restore sufficient function in the
cases of those with variants in both copies of the gene, and
so in those rare cases extra care should be taken to avoid
benzenes. For these individuals with partially or fully
impaired NQO1 pathways, there may be benefit found in
pushing glutathione pathways or providing oral glutathione.
One intermediate metabolite of benzene (benzene oxide) has
been demonstrated to conjugate with glutathione for effi-
cient removal and deactivation of this product (46) however
this has not yet been studied as a sufficient mechanism in
terms of significantly alleviating benzene toxicity.

Pesticide exposure and genomics

Pesticides are removed by various processes depending on
the type of pesticide. Pesticides are considered
“environmental neurotoxicants” (47). One of the most fam-
ous pesticide pathways is the PON1 gene pathway which
encodes the enzyme paraoxonase 1. This protein is involved
in hydrolyzing organophosphorus insecticides. In a study of
individuals with very high environmental or occupational
exposure (exterminators and those spraying crops with pes-
ticides) to various PON1 metabolized pesticides, there was a
1.9–2.7� increased risk of macular degeneration. This fits
with the fact that variants in PON1 have been associated
with increased risk of organophosphate toxicity, macular
degeneration, as well as with a number of other health issues
(47). For individuals with known significant variants in the
PON1 pathway there are many genomically targeted poten-
tial interventions. Advising them to use organic produce for
at least the “dirty dozen” can decrease their exposure to
these organophosphates. Additionally, quercetin (48), astax-
anthin (49) and pomegranate (50) have been shown to upre-
gulate PON1 expression. Nutritionally, avoiding high

Figure 3. Benzene Metabolism. Benzene is metabolized in a series of steps catalyzed by various enzymes including CYP2E1, Myeloperoxidase (MPO), Epoxide
Hydrolase (EH), and NQO1. NQO1 plays a critical role in converting the highly toxic benzoquinones back into the less toxic and more readily conjugated hydroqui-
nones. Adapted from diagram courtesy of Dr. Brian Cornblatt, PhD.
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fructose corn sirup which decreases PON1 expression, and
increasing the consumption of pomegranate juice can be
beneficial and in one study the equivalent of 2 oz of pom-
egranate juice was shown to increase PON1 activity by up to
83% (50).

CYP450 system and toxicity

While this review does not have time to do a full discussion
of the Cytochrome P450 (CYP450) system, an evaluation on
the genomics of clearance of environmental toxicants would
not be complete without a discussion of this system.
Cytochrome P450s are heavily expressed in the main organs
responsible for removing toxicants including the liver, kid-
ney and GI tract, but are also components of the blood-
brain barrier (51). CYP450 enzymes are important for what
is known as “Phase I metabolism”, which means they are
responsible for making compounds more water soluble so
they can effectively be eliminated by the kidneys. CYPs cata-
lyze various reactions such as hydrolysis, oxidation and
reduction that are involved in the metabolism of xenobiotics
(foreign substances) including drugs, chemicals and pollu-
tants as well as in the metabolism of hormones (52). There
are many different CYP450s that are denoted with a series
of numbers and letters. However, in the context of a discus-
sion of environmental toxicants, CYP1B1 and CYP2E1 are
of particular importance as they catalyze the conversion of
many environmental toxicants into carcinogens and contrib-
ute to other diseases because of their role in lipid peroxida-
tion. These two enzymes (along with CYP1A1 and CYP2D6)
are not only found in the liver but have also been found in
significant amounts within the mitochondria. Thus, individ-
uals harboring CYP1B1 variants that increase the expression
of these enzymatic pathways have the associated increased
risk for adverse health outcomes. This is an important con-
cept of genomics to understand. In addressing genomic var-
iants, an understanding of function and relation to health
risks must first be considered prior to deciding whether to
upregulate or downregulate activity. As one can imagine
foods, supplements, medications and toxicants can differen-
tially up and downregulate enzymatic functions.

Some of the compounds metabolized by CYP1B1 include
polycyclic aromatic hydrocarbons (PAHs), which have mul-
tiple benzene rings hooked together in their backbone. PAH
exposure comes from the combustion of coal, oil and other
biofuels (even from the burning of wood and other organic
materials) (53). In first world countries where people do not
tend to cook over coal or wood burning stoves, exposure
comes from smoke (including secondhand smoke) as well as
from grilling and smoking meat (54). Heterocyclic amines
(HAAs) contain a benzene ring and a nitrogen (amine) con-
taining group. Niacin (vitamin B3) is a heterocyclic amine,
but carcinogenic heterocyclic amines are generally formed
when protein foods (meats, etc.) are cooked at a high tem-
perature (55). An abundance of heterocyclic amines are also
released from tobacco when it is smoked (56).

Another CYP1B1 substrate, N-nitrosamines are created as
part of a reaction between nitrogen oxide and secondary

amines. Nitrites, which are used as food preservatives—par-
ticularly in processed meats, generate these potentially car-
cinogenic compounds or “pro-carcinogens.” When these
substances are enzymatically cleaved by CYP1B1, they
become carcinogenic and can induce mutations in proto-
oncogenes and tumor suppressor genes and result in DNA
damage (57). CYP1B1 mediated increases in lipid and pro-
tein peroxidation also can contribute to significant tissue
damage since lipids are an essential part of the membranes
of cells. Lipid peroxidation has been implicated in cardiac
disease, hypertension, inflammatory bowel disease, bipolar
disorder, asthma and neurodegenerative diseases to name a
few (58–62).

Many natural flavonoids such as naringenin (63), resvera-
trol and pterostilbene have been shown to decrease CYP1B1
expression (64, 65). In fact, synthetic stilbenes are being
studied as potential drugs because of their ability to decrease
endpoints like tumorigenesis and cancer, hypertension, ath-
erosclerosis, and even obesity (66). Foods that are high in
naringenin, resveratrol and pterostilbene (such as citrus, red
grapes and blueberries), along with the corresponding sup-
plements, may be beneficial to individuals with overactive
CYP1B1 pathways due to genomic variants. While this art-
icle has addressed how CYP activities can be both negatively
and positively impacted by environment, diet, and supple-
mentation, there are other lifestyle changes that can also
help decrease risk. For example, some of the CYP1B1 var-
iants associated with increased activity have been shown to
increase the risk of laryngeal cancer (OR ¼ 2.65). The odds
ratio doubles when combined with smoking (OR¼ 5.8).
When combined with alcohol, the risk is also quite high
(OR ¼ 4.5) (67). Therefore, counseling these individuals
about the dangers of tobacco and alcohol becomes an essen-
tial part of health promotion.

CYP2E1 is also involved in toxin metabolism, with the
by-product of CYP2E1 activation being reactive oxygen spe-
cies. Alcohol indirectly upregulates CYP2E1 which then
leads to more ROS formation. Genetic variants in CYP2E1
that upregulate its transcription can heavily contribute to
alcohol induced liver fibrosis risk as well as inflammation
(68, 69). This enzyme is also involved in the metabolism of
benzene and acrylonitrile, which is used extensively in the
production of plastics. While CYP activity in the brain is
roughly only 1% of that in the liver, CYP450s also appear to
be important contributors to brain pathology and inflamma-
tion. Though not yet confirmed in human studies, chronic
low dose exposures to acrylonitrile compounds have been
associated with glial cell activation and inflammation in ani-
mal models (70). Furthermore, nicotine and alcohol both
upregulate brain CYP2E1, which increases ROS formation
mainly in the form of superoxide and hydrogen perox-
ide (71).

Again, while counseling CYP susceptible individuals to
avoid “upregulating toxicants” is beneficial, other interven-
tions—such as maintaining adequate levels of enzymatic
antioxidants, vitamins (A, C, E), glutathione producers, beta
carotene, and alpha lipoic acid—can be of great help. While
many interventions are focused on treatment of ROS and
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CYP induced damages, some of these interventions, such as
vitamin E, have also been shown to decrease CYP2E1
expression (71). Additionally, hydrogen water has studies
showing it can help to remove ROS and has effects on the
brain and cognition (thus implicating its ability to cross the
blood brain barrier) (72). Therefore, it would be another
potential intervention for those with overactive CYP2E1
pathways. Studies showing that depletion of glutathione
increases the toxicity of CYP2E1 overexpression and that
CYP2E1 inhibitors decrease the toxicity (71) fit with main-
taining ideal glutathione levels in individuals with higher
CYP2E1 expression.

Conclusion

Our genetic code accounts for various pathways paramount
to our innate ability to remove toxicants. While individuals
who are homozygotic for various impairments are the
minority of the population, significant homozygous variants
still cumulatively account for over a third of the population.
These genomically vulnerable individuals serve as “canaries
in the coal mine.” They demonstrate the detrimental signifi-
cance of the chemicals society is exposed to in this new and
modern world. These toxicants influence the disease burden
of cancers, congenital malformations and chronic illness,
particularly for those at genetic risk but for all individuals at
sufficient levels. One course of action clinicians can take is
to help patients understand their own genomic risks and
address their personalized needs through genomically tar-
geted dietary and supplement recommendations. Clinicians,
with the help of genomics, can advise patients to avoid food
with pesticides, glyphosates, higher mercury and arsenic lev-
els, benzene and other toxicants, but also to increase foods
that specifically push their impaired detox pathways such as
brazil nuts, cruciferous vegetables, and pomegranate and
to supplement with sulforaphane, glutathione, vitamin C
and others.

The field of medical genomics is still relatively young
and, while already quite beneficial to the field of personal-
ized medicine and nutrition, there is still a tremendous
amount of research to be done. With so many genes
involved in the removal of toxins and toxicants and an ever-
evolving multitude of toxicants in the environment, a nearly
infinite array of combinations of genetic code and environ-
mental stressors arises for future research. Of particular note
might be longitudinally evaluating many of these naturally
occurring interventions, which have demonstrated benefits
on acute enzyme levels or activity, on real outcomes in gen-
etically compromised individuals- particularly those already
at risk due to geography or occupation.
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